SNP-300R

多功能配电仪表

使用说明书 V2.5

1	序		4
	1.1	SNP-300R 系列选型	4
	1.2	SNP-300R 系列多功能配电仪表的特点	4
	1.3	使用要点	4
	1.4	安全守则	5
	1.5	使用条件	5
2	多功能	能配电仪表简介	6
	2.1	应用领域	6
3	SNP-	300R 功能简述	6
4	技术规	观格参数	7
	4.1	输入信号	7
	4.2	测量精度	7
	4.3	通讯	7
	4.4	适用环境	7
	4.5	安全性	7
	4.6	外形尺寸和重量	8
	4.7	电源	8
	4.8	电池	8
	4.9	PIR 人体红外探头	8
5	包装.		8
6	安装和	印接线方法	9
	6.1	安装效果图	9
	6.2	安装尺寸	9
	6.3	安装	.10
	6.4	拆卸	.10
	6.5	接线方法	.11
7	工程放	拖工注意事项	14
	7.1	辅助电源输入	.14
	7.2	电压输入	.14
	7.3	电流输入	.14
	7.4	安装 CT	.14
	7.5		.14
8	用户打	操作方法	15
	8.1	离线演示	.15
	8.2	定义及说明	.15
	8.3	系统上电	.17
	8.4	察者 U/I	.17
	8.5	祭有具他电参数	.18
	8.6	DI 状态指示	.19
	8.7	UU 状态指示	.19
c	8.8	週 讯 指 示	.19
9	系统约	扁程倶式	19
	9.1	进入/退出系统编程模式	.19
	9.2	系统编程惧式卜的操作	.19

9.3	DO 状态设置和察看	20
9.4	通讯地址设置	20
9.5	通讯波特率设置	20
9.6	接线方法设置	21
9.7	PT 设置	21
9.8	CT 设置	22
9.9	电流零点阈值设置	22
9.10	越限报警设置	22
9.11	DO 模式设置	25
9.12	电度脉冲工作方式设置	25
9.13	继电器工作方式设置	27
9.14	变送量输出设置	29
9.15	自动循环显示方式设置	30
9.16	背光点亮时间设置	30
9.17	PIR 红外感应设置	30
9.18	实时时钟 RTC 设置	31
9.19	电度清零	32
9.20	设置参数复位为默认值	32
9.21	密码设置	32
9.22	显示版本号及产品序列号	33
ji	通讯及组态操作说明	34
10.1	MODBUS-RTU 通讯简介	34
10.2	SNP-300R系列的应用细节及参量地址表	41
10.3	参量地址关系表	46
10.4	SNP-300R PIR应用:现场人员入侵警情记录或者工作人员值守记录操作	48
10.5	电能脉冲输出	48
10.6	越限报警功能	49
10.7	漏电保护	50
	9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 10.1 10.2 10.3 10.4 10.5 10.6 10.7	9.3 DO 状态设置和察看 9.4 通讯地址设置 9.5 通讯波特率设置 9.6 接线方法设置 9.7 PT 设置 9.8 CT 设置 9.9 电流零点阈值设置 9.10 越限报警设置 9.11 DO 模式设置 9.12 电度脉冲工作方式设置 9.13 继电器工作方式设置 9.14 变送量输出设置 9.15 自动循环显示方式设置 9.16 背光点亮时间设置 9.17 PIR 红外感应设置 9.18 实时时钟 RTC 设置 9.19 电度清零 9.20 设置参数复位为默认值 9.21 密码设置 9.22 显示版本号及产品序列号 通讯及组态操作说明 10.1 10.1 MODBUS-RTU 通讯简介 10.2 SNP-300R系列的应用细节及参量地址表 10.3 参量地址关系表 10.4 SNP-300R FIR应用; 现场人员入侵警情记录或者工作人员值守记录操作 10.5 电能脉冲输出 10.6 越限报警功能 10.7 漏电保护

1.2 SNP-300R 系列多功能配电仪表的特点

- ▶ 可直接从电流、电压互感器接入信号
- ▶ 可任意设定 PT/CT 变比
- ▶ 多块仪表可设置不同的通讯地址
- ▶ 高清晰带符号 LCD 显示
- ▶ 方便安装,接线简单,工程量小
- ▶ 可与业界绝大多数 PLC 相连(Modicon, GE, Simens...)
- ▶ 可与业界多种软件通讯(Intouch, Fix, Citec, 组态王等)
- ▶ 通过网关设备可在任意系统中使用

业界开创性的新功能!

- PIR 人体红外探头: 热释电红外感应自动点亮背光,极大的方便现场数据读取,并 且极大的节省设备自身功耗,PIR 人体红外感应状态可做为现场入侵安防信号,远程 报警。
- ▶ 带有上下限报警功能,报警变量、上下限值可任意设置
- ▶ 面板界面带有 LED 电能脉冲输出指示功能,可用于光电检测和校准电能
- 自身待机功耗极低,适应全球对设备待机功耗的新标准和新要求,可实现零待机功耗, 智能的休眠模式可以保证在不使用的时候将功耗降到极低水平。
- ▶ 自备电池,内置可充电锂电池,可使设备工作在离线状态。
- ▶ 离线状态下可以进行演示,查看内部数据并且能够进行必要的设置。

1.3 使用要点

- 本说明书旨在帮助您快速安装、操作和系统集成 SNP-300R 智能电力仪表。
- 在安装和操作之前,请仔细阅读以下注意事项。
- 本说明书供负责安装、维护和操作的技术工程人员使用。

1.4 安全守则

- SNP-300R 系列 智能电力仪表的安装、维护和操作必须由合格的电气人员来进行。
- 不要带电作业。
- 不要打开 SNP-300R系列智能电力仪表的外壳。因机器中没有用户可维护的部件。
- 不要将本产品用于除原目的以外的其他用途。

1.5 使用条件

- 空气温度: 在-25 ⁰C~+70⁰C。
- 大气条件: 空气温度在 20⁰C 时不超过 90%。
- 环境条件:周围介质无爆炸危险,无足以损坏绝缘及腐蚀金属的气体,无导电尘埃。
- 海拔高度: 不超过 2000M。

2 多功能配电仪表简介

多功能配电仪表,又称网络电力仪表、多功能电力仪表或智能配电仪表,是一种数字化监 控终端,集测量、监控、通信于一体的智能化设备,其内部采用现代计算机和数字信号处理技 术,可以代替多种变送器、仪表、继电器等元件。

多功能配电仪表采用 RS-485 接口,标准 MODBUS-RTU 通讯协议,能够集成到任何电力 监控系统中,它还可以支持多种组态软件,非常方便的进行现场的组态和建立监控网络以及实 施各种监控策略。

SNP-300R 是针对电力系统、工矿企业、公用设施、智能大厦的电力监控需求而设计的多功能配电仪表。它能测量所有的常用电力参数,如三相电流、电压,有功、无功功率,电度等,非常适合于实时电力监控系统。

SNP-300R 具有极高的性能价格比,可以直接取代常规电力变送器及测量仪表。作为一种 先进的智能化、数字化的前端采集元件, SNP-300R 多功能配电仪表已广泛应用于各种控制系 统、SCADA 系统和能源管理系统中。

2.1 应用领域

SNP-300R 多功能配电仪表的应用领域非常广泛而且便于系统集成,凡是有电力供应的地 方都有它们的用武之地,特别是在对电力品质、电力安全有较高要求的场合以及有自动化需要 的场合。它适用于如下领域,并且已有众多成功应用经验。

- ▶ 能源管理系统
- ▶ 变电站自动化
- ▶ 配电网自动化
- ▶ 小区电力监控
- ▶ 工业自动化
- ▶ 智能建筑
- ▶ 智能型配电盘、开关柜

3 SNP-300R 功能简述

SNP-300R 采用现代微处理器技术和数字信号处理技术设计而成,每个仪表可测量多种参数,作为远端监控系统(SCADA)的前端;可联网使用,亦可单独使用。

SNP-300R 采用 RS485 的通讯接口和 MODBUS-RTU 通讯协议,以满足您的自动化通信系统。使用低成本的屏蔽双绞线配线即可构造一可靠的通讯网络。大尺寸 LCD 显示器为您提供清晰的数据显示。

对于多功能配电仪表 SNP-300R 的使用者来说,可以轻易地在短时间内学会本机两键式操 作法,多功能配电仪表 SNP-300R 提供自动显示功能,可让使用者同时读取多项电力参数而无 须碰触按键。

SNP-300R 的主要功能如下

- 三相电流
- 三相电压
- 功率(三相有功、三相无功、三相视在)
- 功率因数
- 频率
- 电能(四象限分量、累积)

- 2 D I
- 2 D O 或者 2 路电能脉冲输出
- MODBUS-RTU 通信协议
- 1 路漏电(占用 1DI, 1DO)

4 技术规格参数

- 4.1 输入信号
- 输入电压
 额定值: 100V或400VAC,允许25%的超限;
 过负荷: 2倍额定值(连续);2500VAC/1秒(不循环);
 测量形式: True-RMS;
 负荷:小于0.2VA
 输入电流
 额定值: 5A,允许20%的超限;
 过负载: 2倍额定值;100A/1秒(不循环);
- 测量形式: True-RMS; 负荷: 小于 0.2VA
- 输入漏电流
- 额定值:需要外置漏电互感器支持,二次侧额定电流 2.5mA
- 测量形式: True-RMS;
- 输入频率范围

45~65Hz

- 4.2 测量精度
- 电流和电压: 0.2 级;
- 其它参数: 0.5 级;
- 频率: 0.1Hz;
- 温度漂移系数: 50PPM/℃(0-50℃)

4.3 通讯

- RS485 接口;
- 波特率: 2400bps ~38400bps 可设定
- MODBUS-RTU 协议
- 4.4 适用环境
- 工作温度: -20℃--+75℃;
- 储存温度: -40℃--+85℃;
- 相对湿度: 5%--95% 不结露
- 4.5 安全性
- 设备耐压,绝缘强度:电源、电压输入回路>2kV;
- 电流回路>2.5kV;

4.6 外形尺寸和重量

- 外形 96×96×75mm;
- 重量 0.4kg

4.7 电源

- 额定值 220VAC (+20% / -50%), 50/60Hz 或直流;
- 功耗: <2.5W 在线待机功耗: 0.1W DO 继电器功耗: 0.5W/CH
 DI 开关量输入功耗: 0.3W/CH
 背光功耗: 0.3W/CH

4.8 电池

充电时间: 24H 离线工作电流: 1.5mA 待机电流: 8uA 离线待机时间: 3个月 离线演示操作时间: 30 个小时

4.9 PIR 人体红外探头

探测距离: 0~5m 探测角度: 60°

5 包装

包装内含下列项目:

- 主机(含插拔式端子排)
- 安装件
- 保修卡
- 产品手册

- 6 安装和接线方法
- 6.1 安装效果图

安装使用说明

6.2 安装尺寸

盘面开孔尺寸: 85mm×85mm

6.3 安装

安装示意说明

6.4 拆卸

拆卸示意说明

3. 将本体取出。

6.5 接线方法

6.5.1 SNP-300R 端子排介绍

11	12	13	14	15	16	17	18	19	20	21	22
G	L	Ν	DI1	DI2	COM	D011	D012	D021	D022	А	В
轩	前助点》	原	开	关量输	j入		开关量		RS₄	485	

SNP-300R上排端子图

11	12	13	14	15	16	17	18	19	20	21	22
G	L	Ν	DI1	DI2	COM	D011	D012	IL11	IL12	А	В
辅助点源			开关量输入			开关量	量输出	漏日	电流	RS485	

SNP-300R上排端子图(DO2 的端子用作漏电输入)

11	12	13	14	15	16	17	18	19	20	21	22
G	L	Ν	DI1	DI2	COM	A01+	A01-	A02+	A02-	А	В
辅助点源			开	关量输	iλ		变送量		RS485		

SNP-300R上排端子图(DO1, DO2 的端子用作 4~20mA 变送输出)

1	2	3	4	5	6	7	8	9	10
V1	V2	V3	VN	I11	I12	I21	122	I31	132
A相电压输入	B相电压输入	C相电压输入	N相电压输入	▲ 木 曰 ジ	\ 目 記	E 木 曰 ジ	3 目 1 1	(木 日 ジ	こ目包充

SNP-300R 下排端子

6.5.2 接线图汇总

注意, PT 二次侧(或者直接连接法的电表输入端)必须加入 2A 保险丝。

SNP-300R系列产品测量电路接线方法的电流和电压回路可以分别组合,即电压和电流接线相互 独立,只要符合图中接线规则,不需要更改软件设置即可正确工作。

注: 1.三相四线 1PT 和 三相 1CT 仅限于电压电流信号的测量。

2. 当使用**三相四线直接连接**, **三相四线 3PT, 单相电压连接**时,应把电压接线方式设置为 3LN。当使用**三相三线直接连接**时,应把电压接线方式设置为 3LL。当使用**三相三线 2PT**时,应把电压接线方式设置为 2LL。

三相四线直接连接(3LN),低压

LINE A B C N 2A VIV2 V3 Vn FUSES PT'S FUSES LOAD

三相四线 3PT(3LN), 高压

三相三线 2PT、 2CT 接线图(高压典型应用)

7 工程施工注意事项

7.1 辅助电源输入

在辅助电源输入端必须安装 2A 保险丝。

7.2 电压输入

输入电压应不高于产品的额定输入电压(100V或400V),否则应考虑使用 PT;

在电压输入端须安装 2A 保险丝;

要确保输入电压与输入电流相对应,即相号和相序一致(否则会出现数值和符号错误)。

7.3 电流输入

标准额定输入电流为 5A,大于 5A 的情况应使用外部 CT; 要确保输入电流与电压相对应,相序一致,方向一致; 如果使用的 CT 上连有其它仪表,接线应采用串接方式; 去除产品的电流输入连线之前,一定要先断开 CT 一次回路或者短接二次回路!

7.4 安装CT

建议使用接线排,不要直接接 CT,以便于拆装。

7.5 通讯接线

多功能配电仪表提供串列异步半双工 RS485 通讯接口,采用 MODBUS-RTU 协议,各种数据讯息均可在通讯线路上传送。在一条线路上可以同时连接多达 32 个多功能配电仪表,每个多功能配电仪表均可设定其通讯地址(Address No.),不同仪表的通讯接线端子号码不同。

通讯连接应使用带有铜网的屏蔽双绞线,线径不小于 0.5mm²。布线时应使通讯线远离强电 电缆或其他强电场环境。

8 用户操作方法

8.1 离线演示

系统外部工作电源掉电后,进入离线演示模式。在离线模式下,用户按**确认**可进入演示, LCD显示屏会随机显示电压、电流等演示参数。

在离线状态下可以进入编程模式,其操作与在线状态下的相同。工程师可以在离线状态下 设置参数,用户也可以在离线状态下学习并演示大部分功能。

在离线状态下,系统停止电参数的测量及电度的累积。

除电度参数外,所显示的其他电参数都不是真实值。

系统内置可充电锂电池,可以为仪表提供长达 3 个月以上的电能,如果电池耗尽,需要接通外部工作电源进行充电,锂电池的充电时间为 24 小时。

内置电池耗尽,包括电能参数在内的系统参数不会丢失。

8.2 定义及说明

LCD 全显图

8.2.1 说明

名称	示例	说明
А	E022	显示数据,可以显示浮点数据(4位有效数字)
ab		
В	2200	显示数据,可以显示浮点数据(4位有效数字)
bc		
С	22 18	显示数据,可以显示浮点数据(4位有效数字)
ca		
U	图标点亮	指示数据为电压

Ι	图标点亮	指示数据为电流
PQS	图标点亮	指示数据为有功功率/无功功率/视在功率
RTC	图标点亮	指示数据为实时时钟
SET	图标点亮	指示在设置模式
峰	图标点亮	分时电度中的峰段计量的电度
平	图标点亮	分时电度中的平段计量的电度
谷	图标点亮	分时电度中的谷段计量的电度
ON Dit	ON 图标点亮	指示信号量 DII 状态为 ON
ON Di2	ON 图标点亮	指示信号量 DI2 状态为 ON
ON DI3	ON 图标点亮	
ON DI4	ON 图标点亮	
ON DO1	ON 图标点亮	指示控制继电器 DO1 状态为 ON
ON DO2	ON 图标点亮	指示控制继电器 DO2 状态为 ON
k	图标点亮	指示数据的数量级为"千"
М	图标点亮	指示数据的数量级为"兆"
V	图标点亮	指示数据的单位为"V"
А	图标点亮	指示数据的单位为"A"
W	图标点亮	指示数据的单位为"W"
var	图标点亮	指示数据的单位为"var"
VA	图标点亮	指示数据的单位为"VA"
kWh	图标点亮	指示数据的单位为"kWh"
kvarh	图标点亮	指示数据的单位为"kvarh"
Hz	图标点亮	指示数据的单位为"Hz"
COM	图标闪烁	通讯指示
通讯	指示灯闪烁	通讯指示
上限	指示灯点亮	上限报警
下限	指示灯点亮	下限报警
在线	指示灯点亮	指示 SNP-300R工作在正常模式
11X	指示灯熄灭	指示 SNP-300R 工作在演示模式
电能	指示灯闪烁	电度脉冲输出

8.2.2 按键

系统使用方便简洁的双按键操作:

- **菜单** 编程模式下单击返回到正常模式;正常模式下单击进入编程模式。
- 向上 编程模式下单击数值加一;正常模式下选择查看 PF/F/RTC
- 向下编程模式下单击数值减一;正常模式下选择查看 PQS/EP/EQ
- 确认编程模式下确认数据的输入并进入下一个设置项;正常模式下选择查看 V/I

8.2.3 数据的单位说明

仪表显示的某些单位和 k/M 图标有关,数据单位参照表如下:

参量	k, M 都不点亮	k 点亮	M 点亮
V	V	kV	无效
Ι	А	kA	无效
P/Q/S	W/var/VA	kW/kvar/kVA	MW/Mvar/MVA

8.3 系统上电

依照说明正确接线后,接通工作电源即进入普通模式,进入普通模式默认的显示内容为相 电压数据,系统处于在线状态。

8.4 察看 U/I

在普通模式下,单击确认键可以依次切换察看:相电压、线电压 U,相电流 I。

- ✓ 电压显示的数值单位,通常为 V,当 PT 很大导致显示的数值超过 1000V 时,显示的 电位转换为 kV,k 图标会点亮;当一次侧电压超过 1000000V 时,M 图标会点亮,显示 单位转换为 MV。
- ✓ 电流显示的单位通常为A,如果CT很大导致显示的数值超过1000A时,k图标会点亮, 显示单位转换为kA。
- ✓ 功率 PQS 显示的单位通常是 W/var/VA;如果其中的任何一项超过 1000,则显示的单位转换为 kW/kvar/kVA,同时 k 图标会点亮;如果其中的任何一项超过 1000000,则显示的单位转换为 MW/Mvar/MVA,同时 M 图标会点亮。
- ✓ 如果设定了自动循环显示的时间,单击确认键会进入自动循环显示方式,在这种方式
 下,所有的电参数会以预设的时间间隔循环显示。

8.5 察看其他电参数

在普通模式下,单击向下键可以依次切换察看:系统功率 PQS,有功电度 EP,无功电度 EQ; 单击向上键可以依次切换察看:系统功率因数 PF,频率 F,漏电流 IL,实时时钟 RTC

✓ 有功电度、无功电度在显示的时候分别同时占用第二行和第三行,其中低位的数据显示在第三行上,电度显示的单位固定为 kWh/kvarh。当显示的数据小于 10000000 时,显示一位小数,即精确到 0.1 kWh/kvarh;当显示的数据大于或者等于 10000000,显示精度到个位,即1 kWh/kvarh。

例如显示:

则表示有功电度为 2 031 000 kWh(或 kvarh)

例如显示:

则表示无功电度为 2 031 000 kWh(或 kvarh)

有功电度、无功电度被定时存储在内部的非易失性存储器中,存储的时间间隔为 5 分钟,因此,即使系统掉电或者发生故障,内部的数据也不会丢失。

- ✓ 功率因数 PF 是一个小于 1 的数值它等于 P/S, PF 显示 3 位小数
- ✓ 频率 F 测量的频率范围是 45-60Hz,显示 2 位小数
- ✓ 漏电流 IL 的测量范围是 0~2mA
- ✓ 实时时钟 RTC 的第一行显示年份;第二行显示的是月日,中间由"."分开;第三行显示的是时分,中间由":"分开。
- 8.6 DI 状态指示
 - DI 为湿节点,即仪表内部配备 24VDC 电源,外部无需供电,当外部接通时, DI1/DI2/DI3/DI4 上面的 "ON" 图标显示状态为点亮,否则显示状态为熄灭。
 - DI的状态只能察看,不能修改
- 8.7 DO 状态指示
 - 当 DO 设定状态为接通时, DO1/DO2 上面的 "ON" 图标显示状态为点亮, 否则 显示状态为熄灭。
 - DO状态可以通过面板设定,也可以通过通讯设定

8.8 通讯指示

系统使用 COM 图标指示通讯状态

- ✓ 确保正确连接 RS485 的数据线。
- ✓ 通讯指示图标 COM,用来指明网络的数据传输状态。
- ✓ 当本机接收到正确的数据时, COM 图标及"通讯"指示灯会闪烁。
- 9 系统编程模式

9.1 进入/退出系统编程模式

同时按下**菜单**键会进入系统编程模式,进入系统编程模式前,首先需要输入正确的密码。 输入密码的方法为:

- (1) 按向上或向下键 改变第一位数据(最高位)。
- (2) 按确认键确认数据并准备改变下一位数据。
- (3) 重复(1),(2)直到最后一位(最低位)被改变并确认。

✓ 如果密码输入正确,即进入系统编程模式,否则 返回到普通模式。

- ✔ 仪表出厂时默认的密码设置为1000。
- ✓ 在系统编程模式下,任何时候同时按下菜单键会退出系统编程模式并返回到普通 模式。
- ✓ 系统编程模式下的各项目都被存储在非易失性存储器中,一旦设置成功,再次设置前,始终有效,掉电不会改变密码。

9.2 系统编程模式下的操作

系统编程模式下,确认键用来切换或者确认设置的项目,向上/向下键用来改变需要设置的

内容。系统编程模式下主要有以下设置项目:

9.3 DO 状态设置和察看

DO的输出为继电器的触点状态,DO的设置只有在DO的模式设置为继电器方式时才有效, 参见 9.10。DO 设置状态显示内容如下:

(1) 直接单击确认键,退出 DO1 设置状态直接进入 DO2 设置状态。

(2) 单击向上/向下键改变 DO1 的状态,如果 DO 模式 设置为继电器方式,继电器的触点状态会发生改变,如果DO1 的状态被设置为"1"并且继电器工作方式设置为脉冲方式,

则经过固定的脉冲时间以后,DO1的状态会自动恢复到状态"0"。

- (3) 单击确认键确认 DO1 状态,接着修改 DO2 状态。
- (4) 单击向上/向下键改变 DO2 的状态,如果 DO 模式设置为继电器方式,继电器的触点状 态会发生改变,如果 DO2 的状态被设置为"1"并且继电器工作方式设置为脉冲方式, 则经过固定的脉冲时间以后, DO2 的状态会自动恢复到状态"0"。
- (5) 单击确认键确认 DO2 状态,进入下一个设置项目。

9.4 通讯地址设置

(4) 当设置完第四位后,可单击确认键确认地址状态输入,进入下一个设置项目。

9.5 通讯波特率设置

9600

Set (1) 单击确认键,可退出通讯速率设置状态直接进入下一 6800 个设置项目。 2000 (2) 单击向上/向下键改变通讯速率,直到选定所需的通讯

速率。

(3) 单击确认键确认波特率设置输入,进入下一个设置项目。

9.6 接线方法设置

电压的接线方式有 3LN, 2LL, 3LL 三种,应根据实际的接线选择接线方式。接线方法请参 看 6.5.2 节。

- (1) 单击确认键,可直接退出接线方式设置状态,进入下一个参数值设置项目。
- (2) 按向上/向下键,改变数值。

单击确认键,确认接线方式的设置,进入下一个参数值设置项目。

- 9.7 PT 设置
 - PT1 设置

Set	
PE 1	(1) 单击 确认 键,可直接退出 PT1 参数值高四位设置状
0000	态,进入 PT1 参数值的低四位参数值设置项目。
0000	(2) 单击向上/向下键改变数值,然后可以按确认键确认
0220	并设置下一位。

- (3) 当设置完高四位的第四位数值时,单击确认键,可进入 PT1 的低四位参数值设置。
- (4) 此时若单击确认键,可直接退出 PT1 参数值低四位设置,进入 PT2 参数值设置项目。
- (5) 按向上/向下键可设置 PT1 参数低四位的首位值,按确认键确认并设置下一位。
- (6) 当设置完 PT1 的低四位的第四位数值时,单击确认键,确认 PT1 设置,进入 PT2 参数 值设置项目。
- PT2 设置

PE2 0001 220

(3) 单击确认键,可直接退出 PT2 参数值设置状态,进入下一 个参数值设置项目。

- (4) 按向上/向下键,改变数值。
- (5) 单击确认键,确认 PT2 设置,进入下一个参数值设置项目。

- 9.8 CT 设置
 - CT1 设置

(1) 单击确认键,可直接退出 CT1 参数值设置状态,进入下一个参数值设置项目。

(2) 按向上/向下键,进行首位数值设定,直至想要的数值。

(3) 按确认键确认并设置下一位。

(4) 当设置完最末一位时,单击**确认**键,确认 CT1 设置, 进入下一个参数设置项目。

● CT2 设置设置

(1) 单击**确认**键,可退出二次侧额定电流设置状态直接进入下一个设置项目。

(2) 单击**向上/向下**键改变二次侧额定电流,直到选定所需的额定电流。

(3) 单击**确认**键确认二次侧额定电流设置输入,进入下一 个设置项目。

9.9 电流零点阈值设置

可以根据需要设置电流测量值的零点阈值,设置范围为 5~100mA,默认值为 40mA。

(1) 单击**确认**键,不改变电流零点阈值的设置,进入下一个参数值设置项目。

(2) 按向上/向下键,进行首位数值设定,直至想要的数值。

(3) 按确认键确认并设置下一位。

(4) 当设置完最末一位时,单击**确认**键,确认电流零点阈值设置,进入下一个参数设置项目。

9.10 越限报警设置

可以设置一路上限报警和一路下限报警。当选择的上限参量的值高于设置的上限值时,产 生上限报警输出;当选择的下限报警参量的值低于设置的下限值时,产生下限报警。可选择的上 限或下限报警的地址为:

参量名称	F	V1	V2	V3	VLNavg	V12	V23	V31	VLLavg	I1
参量地址	304	305	306	307	308	309	310	311	312	313
参量名称	I2	I3	Iavg	P1	P2	P3	Psum	Q1	Q2	Q3
参量地址	314	315	316	318	319	320	321	322	323	324
参量名称	Qsum	S1	S2	S3	Ssum	PF1	PF2	PF3	PF	I_{Δ}
参量地址	325	326	327	328	329	330	331	332	333	340

上下限报警值可设置的范围为-29999~29999,设置的电压,电流的值为二次值。

单击**确认**键不改变上限报警的设置,直接进入下一个项目 的设置,单击向上/向下键进入上限报警的设置。

9.10.1.1 上限报警参量地址设置

SFF

(1) 如果直接单击**确认**键则不改变当前上限报警参量 地址的设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次在 0-9 之间切换,持续按住不放开,数字会在 0~9间快速切换,间隔时间为 0.2 秒。

(3) 单击确认键确认数据设置并设置下一个数字。

(4) 重复(2),(3) 直到最后一位(最低位)被改变并确认后进入下一个设置项

9.10.1.2 上限报警的上限值设置

(1) 如果直接单击**确认**键则不改变当前上限报警上限值设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变正负号,在正号 '0' 与负号 '-' 之间切换。

(3) 单击**确认**键确认正负号的选择,进入最高位数字的设置。

- (4) 单击向上/向下键改变第一个数字(最高位)的数值,依次在 0-9 之间切换,持续按住 不放开,数字会在 0~9 间快速切换,间隔时间为 0.2 秒。
- (5) 单击确认键确认数据设置并设置下一个数字。
- (6) 重复(4),(5)直到最后一位(最低位)被改变并确认后进入下一个设置项目。

9.10.1.3 上限报警 DO 关联设置

上限报警可以关联到 DO1 或 DO2,也可以不关联 DO 输出。若关联到 DO 输出,则 DO 的工作方式要设置为继电器方式,并根据需要把继电器输出方式设置为电平方式或脉冲方式。

上限报警不关联 DO 输出上限报警关联到 DO1 输出上限报警关联到 DO 2 输出

- 单击向上/向下键切换上限报警关联DO的方式。
- 单击确认键确认模式设置并进入下一个设置项目。

9.10.2 下限报警设置

单击**确认**键不改变下限报警的设置,直接进入下一个项目 的设置;单击向上/向下键进入下限报警的设置。

9.10.2.1 下限报警参量地址设置

(1) 如果直接单击**确认**键则不改变当前上限报警参量地址 的设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值, 依次在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换,间隔时间为 0.2 秒。

(3) 单击确认键确认数据设置并设置下一个数字。

(4) 重复(2),(3) 直到最后一位(最低位)被改变并确认后进入下一个设置项

9.10.2.2 下限报警的下限值设置

(1) 如果直接单击**确认**键则不改变当前上限报警上限值 设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变正负号,在正号 '0' 与负号 '-' 之间切换。

(3) 单击确认键确认正负号的选择,进入最高位数字的设置。

- (4) 单击向上/向下键改变第一个数字(最高位)的数值,依次在 0-9 之间切换,持续按住 不放开,数字会在 0~9 间快速切换,间隔时间为 0.2 秒。
- (5) 单击确认键确认数据设置并设置下一个数字。
- (6) 重复(4),(5)直到最后一位(最低位)被改变并确认后进入下一个设置项目。

9.10.2.3 下限报警 DO 关联设置

下限报警 DO 关联设置与上限报警 DO 关联设置相同。

9.10.3 报警动作延迟时间设置

报警动作延迟可设值为 0~100S。上限或下限报警的条件成立时, 启动报警动作延迟计时,

时间到并且报警条件一直成立,则启动报警动作。

(1) 如果直接单击**确认**键,则不改变当前的报警动作延时设 置,进入下一个参数值设置项目。

- (2) 按向上/向下键,进行首位数值设定,直至想要的数值。
- (3) 按确认键确认并设置下一位。
- (4) 当设置完最末一位时,单击确认键,确认报警动作延迟时间设置,进入下一个参数设 置项目。

9.11 DO 模式设置

DO 有三种工作模式选择,模式的设置应与所选购的硬件一致。当选择电度脉冲模式的时候, DO 的继电器模式与变送量输出模式不在有效,与继电器模式与变送量输出模式相关的设置也不 在起作用,在面板的设定中不会出现;当选择继电器模式或变送量输出模式的时候,电度脉冲模 式相关的设置仍然有效,电度脉冲由面板上相关的指示灯输出。

三种 DO 工作模式

继电器模式

4~20mA 变送量输出模式

- 单击向上/向下键切换 DO 的工作模式。
- 单击确认键确认模式设置并进入下一个设置项目。

9.12 电度脉冲工作方式设置

电度脉冲工作方式主要设置如下内容:

9.12.1 DO1 对应的电度参数

DO1 电度脉冲对应的电度参数显示如下:

发出的无功电度有功电度绝对值和有功电度和

无功电度绝对值和无功电度和无输出

- ✓ 单击向上/向下键切换 DO1 对应的电度参数。
- ✓ 单击确认键确认模式设置并进入下一个设置项目。

9.12.2 DO2 对应的电度参数

✓ DO2 电度脉冲对应的电度参数显示如下:

✓ 单击确认键确认模式设置并进入下一个设置项目。

9.12.3 电度脉冲输出的宽度

- (4) 重复(2),(3) 直到最后一位(最低位) 被改变并确认后进入下一个设置项目。
 - ✔ 如果设置的数据超出了规定的范围,系统会设置为一个默认的数据

9.12.4 每 kWh 对应的脉冲个数

(1) 如果直接单击**确认**键则不改变当前电度脉冲宽度的设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值, 依次在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换,间隔时间为 0.2 秒。

(3) 单击确认键确认数据设置并设置下一个数字。

- (4) 重复(2),(3) 直到最后一位(最低位)被改变并确认后进入下一个设置项目。
 - ✔ 如果设置的数据超出了规定的范围,系统会设置为一个默认的数据
 - ✓ 如果上述两个参数设置的不合理,比如运行的电表每秒钟改变 3kWh,而设置的脉 冲宽度*脉冲参数〉3kWh,则脉冲的输出是一个持续高电平。

9.13 继电器工作方式设置

如果 DO 模式设置为继电器方式,则可以进入本项目的设置状态。继电器工作方式主要设置如下内容:

9.13.1 继电器1的工作方式

✔ 继电器有两种工作方式

电平方式脉冲方式

- ✓ 单击向上/向下键切换选择继电器工作模式。
- ✓ 单击确认键确认模式设置并进入下一个设置项目。

9.13.2 继电器1脉冲方式的脉冲宽度

- (3) 单击确认键确认数据设置并设置下一个数字。
- (4) 重复(2),(3) 直到最后一位(最低位)被改变并确认后进入下一个设置项目。
 - ✔ 如果设置的数据超出了规定的范围,系统会设置为一个默认的数据
- 9.13.3 继电器 2 的工作方式
 - ✓ 继电器有两种工作方式

电平方式脉冲方式

- ✓ 单击向上/向下键切换选择继电器工作模式。
- ✓ 单击确认键确认模式设置并进入下一个设置项目。
- 9.13.4 继电器 2 脉冲方式的脉冲宽度

(1) 如果直接单击**确认**键则不改变当前继电器脉冲宽度的设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。

- (3) 单击确认键确认数据设置并设置下一个数字。
- (4) 重复(2),(3)直到最后一位(最低位)被改变并确认后进入下一个设置项目。 如果设置的数据超出了规定的范围,系统会设置为一个默认的数据。

如果 DO 模式设置为变送量输出方式,则可以进入本项目的设置状态。

AO 用于把测量参量的值转换为电流信号。AO 输出的电流值与 变送量的关系如图所示,纵坐标为 AO 输出的电流的大小,横坐标为 所选变送的值,L 设置的 4mA 对应的值,H 为设置的 20mA 对应的 值。当测量的值小于L 时,AO 输出为 4mA;当测量值大于H 时, AO 的输出为 20mA。当测量值 V 大于L,小于H 时,测量值 V 与 AO 输出电流 I 的关系为: $V = \frac{H-L}{16mA} * (I - 4mA) + L$ 。AO1 与 AO2

的设置方法相同,下面以AO1的设置值为例说明AO的设置。

9.14.1 AO1 变送量的选择

可以	可以变送的参量如下表所示。										
参量名称	F	V1	V2	V3	VLNavg	V12	V23	V31	VLLavg	I1	
参量地址	304	305	306	307	308	309	310	311	312	313	
参量名称	I2	I3	Iavg	P1	Р2	Р3	Psum	Q1	Q2	Q3	
参量地址	314	315	316	318	319	320	321	322	323	324	
参量名称	Qsum	S1	S2	S3	Ssum	PF1	PF2	PF3	PF	I_{Δ}	
参量地址	325	326	327	328	329	330	331	332	333	340	

不同变送参量的设置范围与设置值的单位如下:

变送参量	设置范围	4mA 或 20mA 对应值的单位	
F	0~65535	0.01Hz	
V1,V2,V3,VLNavg	0~65535	0.1V	
V12,V23,V31,VLLavg	0~65535	0.1V	
I1,I2,I3,Iavg,	0~65535	1mA	
P1,P2,P3,Q1,Q2,Q3	-32768~32767	0.1W/0.1var	
\$1,\$2,\$3	0~65535	0.1VA	
Psum,Qsum	-32768~32767	1W/1var	
Ssum	0~65535	1VA	
PF1,PF2,PF3,PF	-32768~32767	0.001	
I_{Δ}	0~65535	1mA	

变送量选择的界面如右图所示,通过在第三行输入参量的地址 来选择需要变送的量。

9.14.2 AO1 4mA 对应的参数值

右图为 4mA 对应参数值的设置界面。第二行显示的第一为数 为数值的符号,0为正,-为负;第二行的下一位及第三行的4位 数为要设置的数值,数值的设置范围为0~65535(频率,电流,电 压,视在功率等),或-32768~32767(有功功率,无功功率,功率 因数)。

9.14.3 AO1 20mA 对应的参数值

右图为 20mA 对应参数值的设置界面。与 4mA 对应值的设置方法相同。

注意, 20mA 对应的值要大于 4mA 对应的值。

9.15 自动循环显示方式设置

自动循环显示方式时,数据显示的时间长度可以在 1~12 秒间随意设置。

(1) 如果直接单击**确认**键则不改变当前自动循环显示方式的 设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。

(3) 单击确认键确认数据设置并设置第二个数字。

(4) 重复(2),(3)并确认后进入下一个设置项目。

如果设置的数据超出了规定的范围,系统会要求用户重新设置。设置为数据"0"表示系统 不进行自动循环切换显示。

9.16 背光点亮时间设置

可选的背光点亮时间设置有: Off-关闭背光, 0-恒亮, 1/5/10/30 分钟

- ✓ 单击向上/向下键切换选择背光点亮时间。
- ✓ 单击确认键确认数据设置并进入下一个设置项目。

9.17 PIR 红外感应设置

红外感应用来控制 LCD 背光点亮,可以根据需要使能或禁能该功能。

9.18 实时时钟RTC 设置

- 22 522	9.
5€87 2011	(1 下 (2 次 按 (3

- ✓ 单击向上/向下键进入实时时钟设置的二级菜单。
- ✓ 单击确认键确认模式设置并进入下一个设置项目。

9.18.1 *实时时钟RTC 年份设置*

(1) 如果直接单击**确认**键则不改变当前年份的设置,直接进入 下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换,间隔时间为 0.2 秒。

3) 单击确认键确认数据设置并设置第二个数字。

(4) 重复(2),(3)并确认后进入下一个设置项目。

年分的设置范围为 2000~2099

9.18.2 实时时钟RTC 月份设置

Set	(1) 如果直接单击 确认 键则不改变当前月份的设置,直接进入 下一个项目的设置。
0005	(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。
	(3) 单击确认键确认数据设置并设置第二个数字。

(4) 重复(2),(3)并确认后进入下一个设置项目。

9.18.3 实时时钟RTC 日期设置

	(1) 如果直接单击 确认 键则不改变当前日期的设置,直接进入 下一个项目的设置。
0008	(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。
	(3) 单击确认键确认数据设置并设置第二个数字。

(4) 重复(2),(3)并确认后进入下一个设置项目。

9.18.4 实时时钟RTC 小时设置

Set Kour 0014

(1) 如果直接单击**确认**键则不改变当前时间的设置,直接进入下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换,持续按住不放开,数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。

- (3) 单击确认键确认数据设置并设置第二个数字。
- (4) 重复(2),(3)并确认后进入下一个设置项目。

9.18.5 实时时钟RTC 分钟设置

(1) 如果直接单击确认键则不改变当前分钟的设置,直接进入 下一个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依次 在 0-9 之间切换, 持续按住不放开, 数字会在 0~9 间快速切换, 间隔时间为 0.2 秒。

(3) 单击确认键确认数据设置并设置第二个数字。

(4) 重复(2),(3)并确认后进入下一个设置项目。

9.19 电度清零

- **33373** (2) 单击确认键确认清零后进入下一个项目。

设置清零以后,所有的8个电度量都将被设置为0。电度 清零密码为 8015.

9.20 设置参数复位为默认值

- ✓ 单击确认键跳过系统复位,进入下一个项目的设置。
- ✓ 单击向上/向下键切换选择复位。
- ✓ 单击确认键确认复位后进入下一个设置项目。

设置参数复位后,所有的设置参数复位为默认值。

9.21 密码设置

(1) 直接单击确认键则不改变当前密码的设置,直接进入下一 个项目的设置。

(2) 单击向上/向下键改变第一个数字(最高位)的数值,依 次在 0-9 之间切换,持续按住不放开,数会在 0~9 间快速切换, 间隔时间为0.2秒。

(3) 单击确认键确认数据设置并设置下一个数字。

(4) 重复(2),(3) 直到最后一位(最低位)被改变并确认后进入下一个设置项目。

9.22 显示版本号及产品序列号

产品的版本号是一个4位的十进制数据,序列号是一个5 位的十进制数据。

10 通讯及组态操作说明

10.1 MODBUS-RTU 通讯简介

在本章主要讲述如何利用软件通过通讯口来操控 SNP-300R 。本章内容的掌握需要您具有 MODBUS 协议的知识储备并且通读了本册其它章节所有内容,对本产品功能和应用概念有较全 面了解。

本章内容包括: MODBUS 协议简述,通讯应用格式详解,本机的应用细节及参量地址表。

10.1.1 MODBUS 协议简述

SNP-300R 使用的是 MODBUS-RTU 通讯协议, MODBUS 协议详细定义了校验码、数据序 列等,这些都是特定数据交换的必要内容。MODBUS 协议在一根通讯线上使用主从应答式连接 (半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的 信号寻址到一台唯一的终端设备(从机),然后,终端设备发出的应答信号以相反的方向传输给 主机。

MODBUS 协议只允许在主机(PC, PLC等)和终端设备之间通讯,而不允许独立的终端设备之间的数据交换,这样各终端设备不会在它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。

10.1.2 查询—回应周期

图 1 主一从 查询一回应周期表

10.1.3 査询

查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执 行功能的任何附加信息。例如功能代码 03 是要求从设备读保持寄存器并返回它们的内容。 数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域 为从设备提供了一种验证消息内容是否正确的方法。

10.1.4 回应

如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的

回应。数据段包括了从设备收集的数据:象寄存器值或状态。如果有错误发生,功能代码将 被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测 域允许主设备确认消息内容是否可用。

10.1.5 传输方式

传输方式是指一个数据帧内一系列独立的数据结构以及用于传输数据的有限规则,下面定 义了与 MODBUS 协议– RTU 方式相兼容的传输方式。

每个字节的位

- 1个起始位
- 8个数据位,最小的有效位先发送
- 无奇偶校验位
- •1个停止位(有校验时),2个Bit(无校验时)

错误检测(Error checking) CRC (循环冗余校验)

10.1.6 协议

当数据帧到达终端设备时,它通过一个简单的"端口"进入被寻址到的设备,该设备去掉 数据帧的"信封"(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将 自己生成的数据加入到取得的"信封"中,把数据帧返回给发送者。返回的响应数据中包含了以 下内容:终端从机地址(Address)、被执行了的命令(F*unction*)、执行命令生成的被请求数据(Data) 和一个校验码(Check)。发生任何错误都不会有成功的响应。或者返回一个错误指示帧。

10.1.7 数据帧格式

Address	Function	Data	Check
8-Bits	8-Bits	N x 8-Bits	6-Bits

10.1.8 地址 (Address) 域

地址域在帧的开始部分,由一个字节(8位二进制码)组成,十进制为0~255,在我们的 系统中只使用1~247,其它地址保留。这些位标明了用户指定的终端设备的地址,该设备将接收 来自与之相连的主机数据。每个终端设备的地址必须是唯一的,仅仅被寻址到的终端会响应包含 了该地址的查询。当终端发送回一个响应,响应中的从机地址数据便告诉了主机哪台终端正与之 进行通信。

10.1.9 功能 (Function) 域

功能域代码告诉了被寻址到的终端执行何种功能。下表列出了 SNP-300R 用到的功能码, 以及它们的意义和功能。

代码	意义	行为
01	读 DO 状态	获得数字(继电器)输出的当前状态(ON/OFF)
02	读 DI 状态	获得数字输入的当前状态(ON/OFF)
03	读数据寄存器	获得一个或多个寄存器的当前二进制值
05	控制 DO	控制数字(继电器)输出状态(ON/OFF)

16	预置多寄存器	设定二进制值到一系列多寄存器中

10.1.10 数据(Data)域

数据域包含了终端执行特定功能所需要的数据或者终端响应查询时采集到的数据。这些数据的内容可能是数值、参考地址或者设置值。例如:功能域码告诉终端读取一个寄存器,数据域则需要指明从哪个寄存器开始及读取多少个数据,内嵌的地址和数据依照类型和从机之间的不同内容而有所不同。

10.1.11 错误校验(Check)域

该域允许主机和终端检查传输过程中的错误。有时,由于电噪声和其它干扰,一组数据在 从一个设备传输到另一个设备时在线路上可能会发生一些改变,出错校验能够保证主机或者终端 不去响应那些传输过程中发生了改变的数据,这就提高了系统的安全性和效率,错误校验使用了 16 位循环冗余的方法(CRC16)。

10.1.12 错误指示帧和错误指示码

如果从机检测到主机发送的数据存在逻辑错误,比如地址不存在或者数据个数超出范围,则向主机发送错误指示帧。错误指示帧的定义为:功能域(Function)的最高为(MSB)设置为1,其它位保持不变,数据域(Data)定义了错误类型(即错误指示码 Err Code)。注意:如果是 CRC 错误,从机不返回任何数据。

例如主机请求读数字输出状态,但是给出的地址超出有效范围,在这种情况下,从机发出 错误指示码:

Addr	Fun	Byte count	Err Code	CRC16 hi	CRC16 lo
0AH	81H	01H	FFH	12H	04H

本例中错误指示码为 FFH, 功能域为 81H(它将请求的功能码 01H 最高位 b7 设置为 1)

10.1.13 错误检测的方法

错误校验(CRC)域占用两个字节,包含了一个16位的二进制值。CRC值由传输设备计算 出来,然后附加到数据帧上,接收设备在接收数据时重新计算CRC值,然后与接收到的CRC 域中的值进行比较,如果这两个值不相等,就发生了错误。

CRC 运算时,首先将一个 16 位的寄存器预置为全 1,然后连续把数据帧中的每个字节中的 8 位与该寄存器的当前值进行运算,仅仅每个字节的 8 个数据位参与生成 CRC,起始位和终止位 以及可能使用的奇偶位都不影响 CRC。在生成 CRC 时,每个字节的 8 位与寄存器中的内容进行 异或,然后将结果向低位移位,高位则用 "0"补充,最低位(LSB)移出并检测,如果是 1,该寄存器就与一个预设的固定值(0A001H)进行一次异或运算,如果最低位为 0,不作任何处 理。

上述处理重复进行,直到执行完了 8 次移位操作,当最后一位(第 8 位)移完以后,下一个 8 位字节与寄存器的当前值进行异或运算,同样进行上述的另一个 8 次移位异或操作,当数据帧中的所有字节都作了处理,生成的最终值就是 CRC 值。

生成一个 CRC 的流程为:

- 1 预置一个 16 位寄存器为 0FFFFH (全 1),称之为 CRC 寄存器。
- 2 把数据帧中的第一个字节的 8 位与 CRC 寄存器中的低字节进行异或运算,结果存回

CRC 寄存器。

- 3 将 CRC 寄存器向右移一位,最高位填以 0,最低位移出并检测。
- 4 如果最低位为 0: 重复第三步(下一次移位); 如果最低位为 1: 将 CRC 寄存器与一个 预设的固定值(0A001H)进行异或运算。
- 5 重复第三步和第四步直到8次移位。这样处理完了一个完整的八位。
- 6 重复第2步到第5步来处理下一个八位,直到所有的字节处理结束。
- 7 最终 CRC 寄存器的值就是 CRC 的值。

此外还有一种利用预设的表格计算 CRC 的方法,它的主要特点是计算速度快,但是表格需要较大的存储空间,该方法此处不再赘述,请参阅相关资料。

10.1.14 通讯应用格式详解

本节所举实例将尽可能的使用如图所示的格式,(数字为16进制)。

Addr	Fun	Datastart reg hi	Data start reg lo	Data #of regs hi	Data #of regs lo	CRC16hi	CRC16lo
0AH	03H	00H	00H	00H	03H	04H	B0H

Addr: 从机地址

Fun: 功能码

Data start reg hi:数据起始地址寄存器高字节

Data start reg lo:数据起始地址寄存器低字节

Data #of reg hi:数据读取个数寄存器高字节

Data #of reg lo:数据读取个数寄存器低字节

CRC16 Hi: 循环冗余校验高字节

CRC16 Lo: 循环冗余校验低字节

10.1.15 读数字输出状态(功能码01)

● 查询数据帧

查询数据帧, 主机发送给从机的数据帧。01 号功能允许用户获得指定地址的从机的 DO(继电器)输出状态 ON/OFF (1=ON, 0 = OFF),除了从机地址和功能域,数据帧还需要在数据域中包含将被读取 DO(继电器)的初始地址和要读取的 DO(继电器)数量。SNP-300R 中 DO(继电器)的地址从 0000H 开始(DO1=0000H, DO2=0001H)。

下面的例子是从地址为 10 的从机读取 DO1 到 DO2 的状态。

(例如:有2个DO,DO的地址为0000H~0001H)

Addr	Fun	DO start	DO start	DO #of	DO #of	CRC16hi	CRC16lo
		reg hi	reg lo	regs hi	regs lo		
0AH	01H	00H	00H	00H	02H	BCH	B0H

● 响应数据帧

响应数据帧,从机回应主机的数据帧.包含从机地址、功能码、数据的数量和 CRC 错误校

验,数据包中每个 DO 占用一位(1=ON,0 = OFF),第一个字节的最低位为寻址到的 DO 值, 其余的在后面。

下面的例子是读数字输出状态响应的实例。

Addr	Fun	Byte count	Data	CRC16 hi	CRC16 lo
0AH	01H	01H	02H	D2H	6DH

Data 为 DO 状态,它的定义是:

0	0	0	0	0	0	DO2	DO1
b7	b6	b5	b4	b3	b2	b1	b0
	MSB					LSB	

(DO1 = OFF, DO2=ON)

● 错误指示码

如果主机请求的地址不存在或数据个数不正确则返回错误指示码:FFH。

10.1.16 读数字输入状态(功能码 02)

● 查询数据帧

此功能允许用户获得 DI 的状态 ON / OFF (1=ON, 0 = OFF),除了从机地址和功能域,数据帧还需要在数据域中包含将被读取 DI 的初始地址和要读取的 DI 数量。SNP-300R 中 DI 的地址从 0000H 开始 (DI1=0000H, DI2=0001H)。

下面的例子是从地址为 10 的从机读取 DI1 到 DI2 的状态。

Addr	Fun	DI startAddr hi	DI startAddr lo	DI # regs of hi	DI # regs of lo	CRC16 hi	CRC16 lo
0AH	02H	00H	00H	00H	02H	F8H	B0H

● 响应数据帧

响应包含从机地址、功能码、数据的数量和 CRC 错误校验,数据帧中每个 DI 占用一位 (1=ON,0=OFF),第一个字节的最低位为寻址到的 DI 值,其余的在后面。

下面的例子为读数字输入状态响应的实例。

Addr	Fun	Byte count	Data	CRC16 hi	CRC16 lo
0AH	02H	01H	01H	62H	6CH

Data 为 DI 状态,它的定义是:

0	0	0	0	0	0	DI2	DI1
b7	b6	b5	b4	b3	b2	B1	b0
MSB							LSB

(DI1=ON, DI2=OFF)

图 4-6 读 DI1 到 DI2 状态的响应

● 错误指示码

如果主机请求的地址不存在或数据个数不正确则返回错误指示码: FFH。

10.1.17 读数据(功能码03)

● 查询数据帧

此功能允许用户获得设备采集与记录的数据及系统参数。主机一次请求的数据个数没有限 制,但不能超出定义的地址范围。

下面的例子是从 10 号从机读 3 个采集到的基本数据(数据帧中每个地址占用 2 个字节) F,Va,Vb,SNP-300R 中 F 的地址为 0130H, Va 的地址为 0131H,Vb 的地址为 0132H。

Addr	Fun	Data start	Datastart	Data#of	Data #of	CRC16 hi	CRC16 lo
		Addr hi	Addrlo	regs hi	regs lo		
0AH	03H	01H	30H	00H	03H	05H	43H

● 响应数据帧

响应包含从机地址、功能码、数据的数量和 CRC 错误校验。

下面的例子是读取 F, Va, Vb(F=1388H(5000Hz), Va=03E7H(99.9v), Vb=03E9H(100.1v))的响应。

Addr	Fun	Bytecount	Data1 hi	Data1 lo	Data2 hi	Data2lo	Data3hi	Data3lo	CRC16 hi	CRC16 lo
0AH	03H	06H	13H	88H	03H	E7H	03H	E9H	C1H	F4H

● 错误指示码

如果主机请求的地址不存在则返回错误指示码: FFH。

10.1.18 控制DO(继电器) (功能码05)

● 查询数据帧

该数据帧强行设置一个独立的 DO 为 ON 或 OFF, SNP-300R 的 DO 的地址从 0000H 开始 (DO1=0000H, DO2=0001H)。注意: ON 的定义不一定是输出回路的闭合,根据设置参数的 不同设置一次 ON 时,也可能在硬件上输出一个脉冲。

数据 FF00H 将设 DO 为 ON 状态,而 0000H 则将设 DO 为 OFF 状态;所有其它的值都将导 致从机发送错误指示码,并且不影响 DO 状态。

下面的例子是请求 10 号从机设置 DO1 为 ON 状态。

Addr	Fun	DO addr hi	DO addr lo	Value hi	Value lo	CRC16hi	CRC16lo
0AH	05H	00H	00H	FFH	00H	8DH	41H

● 响应数据帧

对这个命令请求的正常响应是在 DO 状态改变以后回传接收到的数据。

Addr	Fun	Doaddr hi	Do addrlo	Valuehi	Valuelo	CRC16hi	CRC16 lo
0AH	05H	00H	00H	FFH	00H	8DH	41H

图示 4-10 控制独立 DO 的响应

● 错误指示码

如果主机请求的地址不存在或数据个数不正确则返回错误指示码: FFH。

10.1.19 预置多寄存器(功能码16)

● **查询**数据帧

功能码 16 允许用户改变多个寄存器的内容, SNP-300R 中系统参数、电度量可用此功能号 写入。主机一次最多可以写入 16 个(32 字节)数据。

下面的例子是预置 10 号从机吸收有功电度(正有功电度) EP_imp 为 17807783.3kWh。存储 电度是数值 X0.1 kWh,因此写入的数值为 178077833,16 进制为 0A9D4089H。 EP_imp 的地址 是 0156H、0157H, EP_imp 占用 32 位,共4 个字节。

Addr	Fun	Data Startreg hi	Data startreg lo	Data#ofregs hi	Data #ofregs lo
0AH	10H	01H	56H	00H	02H

Byte Count	Valuehi	Valuelo	Valuehi	Valuelo	CRChi	CRClo
04H	0AH	9DH	40H	89H	3CH	5DH

● 响应数据帧

对于预置单寄存器请求的正常响应是在寄存器值改变以后回应机器地址、功能号、数据起 始地址、数据个数、CRC 校验码。如图。

Addr	Fun	Data start reg hi	Data startreg lo	Data #of Regs hi	Data #ofRegslo	CRC16hi	CRC16lo
0AH	10H	01H	56H	00H	02H	A1H	5FH

● 错误指示码

如果主机请求的地址不存在或数据个数不正确则返回错误指示码: FFH。

10.2 SNP-300R 的应用细节及参量地址表

SNP-300R 测量值用 Modbus-RTU 通讯规约的 03 号命令读出。DI 第地址区使用 02 号命令 读出, DO 地址使用 01 号命令读出, 05 号命令写入。

通讯值与实际值之间的对应关系如下表:(约定 Val_t 为通讯读出值, Val_s 为实际值)

适用参量	对应关系	单位
电压值V1,V2,V3, Vvavg,V12,V23,V31,Vlavg	$Val_s = Val_t X (PT1 / PT2) / 10$	伏(V)
电流值 I1,I2,I3, Iavg, In	Val_s=Val_t X(CT1/CT2) /1000	安培(A)
功率值 P1, P2, P3, Q1, Q2, Q3, S1, S2, S3, PLsum, QLsum, SLsum	Val_s=Val_t X (PT1 / PT2) X (CT1/CT2 /10	瓦(W)、 乏(var)、 伏安(VA)
功率值 Psum,Qsum,Ssum	Val_s=Val_t X (PT1 / PT2) X (CT1/CT2)	Mg (VA)
电度量 EP_imp,EP_exp,EP_total,EP_net, EQ_imp,EQ_exp,EQ_total,EQ_net	Val_s=Val_t/10	kWh kvarh
功率因数值 PFa, PFb, PFc, Pfcon	Val_s=Val_t / 1000	无单位
频率 F	Val_s=Val_t / 100	赫兹 (Hz)
设备温度	$Val_s = Val_t / 10$	摄氏度
漏电流	IL_s=Val_t / 1000	毫安(mA)

说明: PT1/PT2 就是 PT 比例; CT1/CT2 就是 CT 比例。

范例: Va 的通讯读出值为 2246, PT1 为 100, PT2 为 100,则 Va 的实际值

 $Va = 2246 \times (100/100) / 10 = 224.6V_{\odot}$

	以下为 DI 地址区: 02H 读									
地址	参数	数值范围	数据类型	读写属性						
0000H	DI1	1 = ON, $0 = OFF$	BIT	R						
0001H	DI2	1 = ON, $0 = OFF$	BIT	R						
0003H	DI3	1 = ON, $0 = OFF$	BIT	R						
0004H	DI4	1 = ON, $0 = OFF$	BIT	R						

以下为 DO 地址区: 01H 读,05H 写							
地址	参数	数值范围	数据类型	读写属性			
0000H	DO1	1 = ON, $0 = OFF$	BIT	R/W			
0001H	DO2	1 = ON, 0 = OFF	BIT	R/W			

以下为系统参量地址区: 03H 功能码读, 10H 功能码写							
地址	参数	读写属性	数值范围	数据类型			
FAH	AO1 变送量地址	R/W/P	304~333, 340	word			
FBH	AO1 4mA 对应的参量值	R/W/P	0~65535	word			
FCH	AO1 20mA 对应的参量值	R/W/P	0~65535	word			
FDH	AO2 变送量地址	R/W/P	304~333, 340	word			
FEH	AO2 4mA 对应的参量值	R/W/P	0~65535	word			
FFH	AO2 20mA 对应的参量值	R/W/P	0~65535	word			
100H	保护密码	R/W/P	0~9999	Word			
101H	通讯地址	R/W/P	1~247	Word			
102H	通讯波特率	R/W/P	0-4:对应 2400,4800, 9600,19200,38400bps	word			
103H~104H	保留	-	-	-			
105H	PT1 高字	R/W/P	0~220. x10000	word			
			PT1=hi*10000+lo				
106H	PT1 低字	R/W/P	0~9999	word			
			PT1:100~2200000				
107H	PT2	R/W/P	100, 220, 380	word			
108H	CT1/CTA	R/W/P	1~6000	word			
109H	DO 工作方式选择	R/W/P	0——电度脉冲方式 1——继电器方式	word			
10AH	DO1 脉冲输出电能量选择	R/W/P	0—Ep_imp	word			
10BH	DO2 脉冲输出电能量选择	R/W/P	$1 - Ep_exp$ $2 - Eq_imp$	word			
			3—Eq_exp				
			4——Ep_total				
			6-Eq total				
			7Eq_net				
1001	中华时中帝帝军	D/W//D	8——无输出				
1000	电能脉冲觉度反定	K/W/P	1~100 1 单位为 10ms	word			
10DH	电能脉冲常数,	R/W/P	1~6000	word			
	即脉冲数/kWh		1 单位-1 个脉冲				
10EH	继电器1工作方式选择	R/W/P	0电平	word			
			1——脉冲				
10FH	继电器1脉冲宽度设定	R/W/P	1~600,单位是 50ms	Word			

读写属性定义: R-可读 W-可写 P-掉电后数据不丢失

110H	继电器 2 工作方式选择	R/W/P	0电平	word
111H	继电器2脉冲宽度设定	R/W/P	1~40 单位是 50ms	word
112H	测量参数自动显示	R/W/P	0- 手动 1~10 –自动(间隔时 间单位秒)	Word
113Н	背光点亮时间	R/W/P	0-关闭背光 1-常亮 2-1分钟 3-5分钟 4-10分钟 5-30分钟	Word
114H	红外探测控制背光允许	R/W/P	 0 -禁止红外探测背 光控制 1 -允许红外探测背 光控制 	Word
115H	СТВ	R/W/P	5~6000	Word
116H	СТС	R/W/P	5~6000	Word
117H	CT2	R/W/P	1或5	Word
118H~11FH	保留	-	-	-
120H	上限报警与 DO 的关联	R/W/P	0-无关联	word
121H	下限报警与 DO 的关联	R/W/P	2-DO2	word
122H	上限报警参量地址	R/W/P	304~333, 340	word
123Н	上限值	R/W/P	0 ~ 9999	word
124H	下限报警参量地址	R/W/P	304~333, 340	word
125H	下限值	R/W/P	0~9999	word

下为基本测量参量地址区: 03H 功能码读							
地址	参数	读写属性	数值范围	数据类型			
12CH	红外触发计数	R/P	0~65535	word			
12DH	设备温度	R	-32768~32767	Integer			
12EH~12FH	保留						
130H	频率 F	R	4500~6500	Word			
131H	相电压 V1	R	0~65535	Word			
132H	相电压 V2	R	0~65535	Word			
133H	相电压 V3	R	0~65535	Word			
134H	相电压均值 VLNavg	R	0~65535	Word			
135H	线电压 V12	R	0~65535	Word			
136H	线电压 V23	R	0~65535	Word			
137H	线电压 V31	R	0~65535	Word			
138H	线电压均值 VLLavg	R	0~65535	Word			

139Н	相(线)电流 I1	R	0~65535	Word
13AH	相(线)电流 I2	R	0~65535	Word
13BH	相(线)电流 I3	R	0~65535	Word
13CH	三相电流均值 Iavg	R	0~65535	Word
13DH	中线电流 In	R	0~65535	Word
13Eh	分相有功功率 P1	R	-32768~32767	Integer
13Fh	分相有功功率 P2	R	-32768~32767	Integer
140H	分相有功功率 P3	R	-32768~32767	Integer
141H	系统有功功率 Psum	R	-32768~32767	Integer
142H	分相无功功率 Q1	R	-32768~32767	Integer
143H	分相无功功率 Q2	R	-32768~32767	Integer
144H	分相无功功率 Q3	R	-32768~32767	Integer
145H	系统无功功率 Qsum	R	-32768~32767	Integer
146H	分相视在功率 S1	R	0~65535	word
147H	分相视在功率 S2	R	0~65535	word
148H	分相视在功率 S3	R	0~65535	word
149H	系统视在功率 Ssum	R	0~65535	word
14AH	分相功率因数 PF1	R	-1000~1000	Integer
14BH	分相功率因数 PF2	R	-1000~1000	Integer
14CH	分相功率因数 PF3	R	-1000~1000	Integer
14DH	系统功率因数 PF	R	-1000~1000	Integer
14EH(高 16 位) 14FH(低 16 位)	系统有功功率 PLsum	R	-65535~65535	Long
150H(高 16 位) 151H(低 16 位)	系统无功功率 QLsum	R	-65535~65535	Long
152H(高 16 位) 153H(低 16 位)	系统视在功率 SLsum	R	-65535~65535	Long
154H	漏电流 IL	R	0~65535	word

以下为电度参量地址区:03H 功能码读,10H 功能码写								
地址	参数	读写属性	数值范围	数据类型				
156H(高16位)	有功电度 Ep_imp	R/W/P	0~999999999	Dword				
157H(低16位)								
158H(高16位)	有功电度 Ep_exp	R/W/P	0~999999999	Dword				
159H(低16位)								
15AH(高16位)	感性无功电度 Eq_imp	R/W/P	0~999999999	Dword				
15BH(低16位)								
15CH(高16位)	容性无功电度 Eq_exp	R/W/P	0~999999999	Dword				
15DH(低16位)								
15EH(高16位)	净有功电度 Ep_total	R/W/P	0~999999999	Dword				
15FH(低16位)								
160H(高16位)	网络有功电度 Ep_net	R/W/P	0~999999999	Dword				
161H(低16位)								

162H(高16位) 163H(任16位)	净无功电度 Eq_total	R/W/P	0~999999999	Dword
164H(高16位) 165H(任16位)	网络无功电度 Eq_net	R/W/P	0~999999999	Dword

以下为实时时钟参数区: 03H 功能码读, 10H 功能码写						
地址	参数	读写属性	数值范围	数据类型		
170H	年(高字节) 月(低字节)	R/W	年 - 0~99 月 - 1~12	word		
171H	日(高字节) 时(低字节)	R/W	日 - 1~31 时 - 0~23	word		
172H	分(高字节) 秒(低字节)	R/W	分 - 0~59 秒 - 0~59	word		

以下为谐波参量地址区: 03H 功能码读							
地址	参数	读写属性	数值范围	数据类型			
405AH	V1 或 V12 总谐波畸变率 THD_V1	R	0~10000	word			
405BH	V2 或 V31 总谐波畸变率 THD V2	R	0~10000	word			
405CH	V3 或 V23 总谐波畸变率 THD V3	R	0~10000	word			
405DH	相/线电压平均总谐波畸 变率 THD_V	R	0~10000	word			
405EH	I1 总谐波畸变率 THD_I1	R	0~10000	word			
405FH	I2 总谐波畸变率 THD_I2	R	0~10000	word			
4060H	I3 总谐波畸变率 THD_I3	R	0~10000	word			
4061H	线电流平均总谐波畸变率 THD_I	R	0~10000	word			
4062H~407FH	V1 或 V12 谐波含有率 (2~31 次)	R	0~10000	word			
4500H~451FH	V1 或 V12 谐波含有率 (32~63次)	R	0~10000	word			
4080H	V1 或 V12 奇谐波畸变率	R	0~10000	word			
4081H	V1 或 V12 偶谐波畸变率	R	0~10000	word			
4082H	V1 或 V12 波峰系数	R	0~10000	word			
4083H	V1 或 V12 电话谐波波形 因数	R	0~10000	word			
4084H~40A5H	V2 或 V31 谐波参数		同 V1	word			
4520H~453F	V2 谐波含有率(32~63 次)	R	0~10000	word			
40A6H~40C7H	V3 或 V23 谐波参数		同 V1	word			
4540H~455FH	V3 谐波含有率(32~63 次)	R	0~10000	word			
40C8H~40E5H	I1 谐波含有率(2~31 次)	R	0~10000	word			
40E6H	I1 奇谐波畸变率	R	0~10000	word			
40E7H	I1 偶谐波畸变率	R	0~10000	word			
40E8H	I1 K 系数	R	0~65535	word			
40E9H~4109H	I2 谐波参数		同 I1	word			

410AH~412AH	I3 谐波参数	同 I1	word

10.3 参量地址关系表

基本测量参量各种地址关系表							
参数	地址			参数	地址		
22	十六	十进	Modbus	22	十六	十进	Modbus
频率 F	130	304	40305	分相无功功率 Q1	142	322	40323
相电压 V1	131	305	40306	分相无功功率 Q2	143	323	40324
相电压 V2	132	306	40307	分相无功功率 Q3	144	324	40325
相电压 V3	133	307	40308	系统无功功率 Qsum	145	325	40326
相电压均值 Vvavg	134	308	40309	分相视在功率 S1	146	326	40327
线电压 V12	135	309	40310	分相视在功率 S2	147	327	40328
线电压 V23	136	310	40311	分相视在功率 S3	148	328	40329
线电压 V31	137	311	40312	系统视在功率 Ssum	149	329	40330
线电压均值 Vlavg	138	312	40313	分相功率因数 PF1	14A	330	40331
相(线)电流 I1	139	313	40314	分相功率因数 PF2	14B	331	40332
相(线)电流 I2	13A	314	40315	分相功率因数 PF3	14C	332	40333
相(线)电流 I3	13B	315	40316	系统功率因数 PF	14D	333	40334
三相电流均值 Iavg	13C	316	40317	系统有功功率 PLsum	14E	334	40335
中线电流 In	13D	317	40318		14F	335	40336
分相有功功率 P1	13E	318	40319	系统无功功率 QLsum	150	336	40337
分相有功功率 P2	13F	319	40320		151	337	40338
分相有功功率 P3	140	320	40321	系统视在功率 SLsum	152	338	40339
系统有功功率 Psum	141	321	40322		153	339	40340
				漏电流 I _△	154	340	40341
		E	电度参量各利	中地址关系表			
吸收有功由度 Fn imn	156	342	40343	总有功由度 Fn total	15E	350	40351
www.usynu/cep_mp	157	343	40344		15F	351	40352
发出有功电度 Fn exn	158	344	40345	净有功电度 En net	160	352	40353
Ku Histille Ep_exp	159	345	40346		161	353	40354
吸收无功由度 Fa imn	15A	346	40347	总无功由度 Factotal	162	354	40355
MAX 12-37 12/2 Eq_mp	15B	347	40348	心心为也汉 Eq_total	163	355	40356
发出于功由度 Fa evp	15C	348	40349	净无功由度 Fa net	164	356	40357
次山元为 石汉 Eq_cxp	15D	349	40350	IF THE THE LET LET	165	357	40358
	•	实明	可时钟参量谷	各种地址关系表	•		
年月	170H	368	40369	分秒	172H	369	40370
日时	171H	370	40371				

备注:

- 数据类型: "BIT"指1位二进制位; "word"指16位无符号整数; "Integer"指16位 有符号整数; "Dword"指32位无符号整数; "Long"指32位有符号整数。
- 读写属性: "R"只读,读 DI用 02H 号命令;读 DO用 01H 号命令;读其它参量用 03H 号命令;"R/W"可读可写,写(控)DO用 05H 号命令;写系统参量用 10H 号命令。 禁止向未列出的或不具可写属性的地址写入。/P 表示掉电数据不丢失
- 电度量为 32 位无符号整数,高位、低位各占一个地址。上位软件应该将高位数值乘以 65536 再加上低位数值才可得到这一参量值。然后再考虑通讯值和实际值之间的关系得 出参量值再除以 10 方可得到该参量实际值的结论。另外,电度量累积到 999999999(通 讯值,实际值为 99999999.9kWh 或 kvarh)后自动清零,各电度量间不互相影响。还有, 电度参量是可写的,即可以手动清零或改写成你需要的值。
- 波特率的设定范围 2400 bps,4800 bps,9600 bps,19200 bps,38400 bps.在此范围外的设定 是不允许的。如果写入超范围的设定值, 仪表会启用默认波特率: 9600 bps。
- 关于 DO 的设置:目前 DO 可以选择在继电器输出方式和电度输出方式(功能码 03 地址 109H),如果设定为电度输出方式,继电器的相关设置(功能码 03 地址 10EH,10FH,110H,111H)将不起作用,控制继电器的输出(功能码 01)也不起作用;如果设定为继电器方式,电度脉冲的相关设置(功能码 03 地址 10AH,10BH,10CH,10DH)将不起作用。
- 关于继电器输出的工作方式:如果设定为脉冲方式(功能码 03 地址 10EH,110H),当
 DO 输出 1 时(功能码 01 地址 01H,02H),系统将根据脉冲宽度的设定(功能码 03 地址 10FH,110H)输出相应宽度的脉冲,随后复位继电器,此后读 DO 的状态将变为 0。
- 电度存储的时间间隔为5分钟。
- 电度的显示值为净有功电度/净无功电度,其他分量需从通讯读出或者定制。
- 电度的潜动试验标准为 0.5%: 即潜动电压 0.5V, 潜动电流 0.025A。只有电压和电流 同时高于该启动值时,电能才开始计量
- 数值上 PLsum=10*Psum, QLsum=10*Qsum, QLsum=10*Qsum。这样处理的目的是: 有些客户对功率的精度要求比较高,这种情况通常发生在信号比较小的条件下,另一些客户则相反。精度高的数值处理相对更加复杂,客户可以根据自己的具体情况选择。

10.4 SNP-300R PIR 应用:现场人员入侵警情记录或者工作人员值守记录操作

光信号脉冲输出

SNP-300R PIR 是由仪表面板上的菲涅尔透镜通过检测移动人体的热释电红外信号来实现的,见上图位置示意图,请不要以任何形式遮挡该透镜,以确保 PIR 能够正常工作。

SNP-300R PIR 功能配合上位机软件可是实现复杂的现场工作状态记录功能

地址	参数	读写属性	数值范围	数据类型
12CH	红外触发计数	R/P	0~65535	Word

12CH 寄存器记录了现场红外探测的发生次数,每当有人员进入现场时,该寄存器变量数据 会发生变化,上位机只需要按照一个固定时间间隔轮询设备,当触发技术发生变化时,即表示现 场有人员进入。

12CH 寄存器的计数数据掉电不会丢失。查询该数据即可获知数据被现场人工读取次数。

配合上位机的时钟记录、事件记录或者报警处理,这种记录可以作为现场未经授权的人员 入侵报警,也可以作为工作人员定时现场轮检的自动工作日志。

10.5 电能脉冲输出

SNP-300R标配带有一路光信号脉冲输出,参见上图,可以用于通过光电校验装置实现电能的 校验或者电能信号输出:

光信号脉冲输出受如下寄存器影响:

地址	参数	读写属性	数值范围	数据类型
10CH	电能脉冲宽度设定	R/W/P	1~100	Word
			1 单位为 20ms	
10DH	电能脉冲常数,	R/W/P	1~6000	Word
	即脉冲数/kWh		1 单位-10 个脉冲	
10AH	DO1 脉冲输出电能选择	R/W/P	0——Ep_imp	word
			1——Ep_exp	
			2——Eq_imp	
			3——Eq_exp	
			4——Ep_total	
			5——Ep_net	
			6——Eq_total	
			7——Eq_net	
			8——无输出	

DO 也可以配置成电能脉冲输出方式,请注意如果配置成这种方式,应向厂家订货,将端口硬件更改为晶体管输出,否则内置的继电器会因动作频繁而迅速老化损坏

DO 电能输出的设置寄存器为:

地址	参数	读写属性	数值范围	数据类型
109H	DO 工作方式选择	R/W/P	0——电度脉冲方式 1——继电器方式	word

请注意无论是否设置 109H 寄存器, 光脉冲输出都不受影响。

10.6 越限报警功能

与越限报警功能有关的寄存器:

地址	参数	读写属性	数值范围	数据类型
120H	上限报警与 DO 的关联	R/W/P	0-无关联 1-DO1	word
121H	下限报警与 DO 的关联	R/W/P	2-DO2	word
122H	上限报警参量地址	R/W/P	304~333, 340	word
123H	上限值	R/W/P	-29999 ~29999	word
124H	下限报警参量地址	R/W/P	304~333, 340	word
125H	下限值	R/W/P	-29999 ~29999	word

在使用时,可以对同一个寄存器变量设置上限/下限,也可以在超出上限/下限时对应输出一 个 DO 状态。

设置的上限/下限值为二次侧值,当越线参量选择为电压,电流,功率时,设置值的单位依次为V,A,W。

10.7 漏电保护

SNP-300R有一路可选的漏电保护输入。漏电流测量值的寄存器:

地址	参数	读写属性	数值范围	数据类型
154H	漏电流值	R	0~65535	word

可以通过把上/下限报警参量地址的值设置为 154H(即十进制的 340),把漏电流关联到上/下报警。

漏电互感器的参数为: 匝数比 1000: 1; 1000mA:1mA

备注: 与漏电测量相关的章节,请参考阅读:

4.1 输入信号

6.5.1 SNP-300R 系列端子排介绍

8.5 察看其他电参数

9.9 越限报警设置